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Abstract
We study the adsorption of a Lennard-Jones gas in a slit-like pore formed by
two walls exhibiting different adsorbing properties. The calculations are carried
out by means of a density functional approach. We show that changes in the
potential field exerted by one wall can lead to substantial modifications in the
phase behaviour of confined fluids.

1. Introduction

If a fluid is confined to a porous adsorbent, its phase behaviour significantly differs from
that of a relevant bulk fluid under identical thermodynamic conditions. The effects of fluid
confinement on phase transitions have been studied for a long time, cf the review papers [1–4].
One of the most often explored models was the model of a slit-like pore. Usually, both
pore walls have been assumed to be formed by two identical, energetically homogeneous and
geometrically flat surfaces. Recently, investigations into adsorption in slit-like pores with
energetically heterogeneous walls have also been carried out, demonstrating the significance
of heterogeneity effects on the phase behaviour of a confined fluid.

Two surfaces forming a slit do not need to be identical; in fact they can exhibit different
adsorbing properties. In the literature there are several papers [5–13] concerning the phase
behaviour of ferromagnetic Ising films and binary mixtures (and polymers) confined to slit-
like pores with the walls exerting opposing surface fields (so-called ‘competing walls’). In
such a case a novel type of phase transition can be observed. This transition occurs from
a state with an interface fluctuating perpendicularly to the pore walls to a state where the
interface is parallel to the walls and is called localization–delocalization transition. It has been
demonstrated that for film thicknesses approaching infinity, the transition critical temperature
does not converge towards the bulk critical temperature, Tc, but rather towards the wetting
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transition temperature. As the wetting transition can be either second or first order, the interface
localization–delocalization transition can also be second or first order. In addition, it was
found [6, 7] that when the wetting transition is first order, the novel transition may be second
order for sufficiently thin films.

Identical walls and ‘competing walls’ are two extreme cases. Thus it is interesting to study
how the phase diagram of a confined fluid is altered when the adsorbing potential due to one
pore wall is systematically weakened from the initial value, common for both walls, to zero.
Such studies have been carried out for a lattice gas confined to a slit-like pore with differently
adsorbing walls quite recently [14]. We have observed that if the adsorption energy due to one
wall becomes weaker and weaker, a single coexistence envelope, which describes capillary
condensation in a pore with two identical walls, splits into several, layering-like branches. The
goal of this note is to check if a similar behaviour can also be found for lattice-off systems.
The tool we use for that purpose is a density functional approach. Although a non-perturbative
density functional approach has recently been proposed [15] we still apply here the standard
method, developed by Tarazona [16] according to which the excess Helmholtz free energy is
divided into the reference hard sphere and the attractive parts.

2. Theory

Let us formulate the model first. We assume that the pore walls are energetically homogeneous,
that is the potential exerted by a single wall, v(i)(z), is a function of the normal distance, z,
only. The external field due to both pore walls is given by

v(z) = v(1)(z) + v(2)(H − z) (1)

where H is the pore width. In general, the functions v(i) describing the interactions of fluid
particles with the first (v(1)) and with the second wall (v(2)(z)) are different. We model these
two functions using the Lennard-Jones (9, 3) potential

v(i)(x) =
{

εi[(z0/x)9 − (z0/x)3] x > 0

∞ otherwise
(2)

i = 1, 2. In some cases the function v(2)(H − z) is given by a hard-wall (HW) potential

v(2)(x) =
{

0 x > 0

∞ otherwise.
(3)

The fluid particles interact via the truncated Lennard-Jones potential

u(r) =
{

ε[(σ/r)12 − (σ/r)6] r < rcut

0 otherwise
(4)

where rcut is the cut-off distance, and σ is the Lennard-Jones diameter. We assumed rcut = 2.5σ

and z0 = 0.5σ . Hereafter we use σ and ε as the units of length and energy, respectively. We
also define the reduced temperature as T ∗ = kT /ε. The grand potential functional �[ρ] is
expressed as

�[ρ] = F [ρ] +
∫

{v(z; H) − µ}ρ(z) dr (5)

where F [ρ] and µ are the configurational free energy and the configurational chemical potential
of the fluid, respectively and ρ(z) is the local density. The equilibrium value of � is obtained
minimizing the functional, at a constant temperature, chemical potential and the pore width.
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The free-energy functional F [ρ] consists of two parts: an ideal gas part, F id, and an excess
part, F ex. The ideal contribution has the form F id/kT = ∫

ρ(z)[ln ρ(z) − 1] dr, whereas
the excess Helmholtz free energy is divided into the reference hard-sphere contributions
F ex = F ex,hs + F ex,att. We used the Tarazona approach [16] to evaluate the excess-free-energy
functional for hard spheres. Thus

F ex,hs[ρ] =
∫

ρ(z)f hs[ρ̃(z)] dr (6)

where f hs denotes the free energy per particle, resulting from the Carnahan–Starling equation
of state and ρ̃(z) is the weighted density. The attractive energy contribution to the free-energy
functional is determined by invoking a mean-field approximation, thus

F ex,att = 1
2

∫ ∫
ρ(z)ρ(z′)ua(|r − r′|) dr dr′ (7)

where the division of the Lennard-Jones potential (4), into attractive and repulsive parts has
been performed according to the recipe of Weeks, Chandler and Andersen [17].

The amount of confined fluid equals

� =
∫

ρ(z) dz (8)

and the density profile equation, obtained from the condition δ�/δρ(z) = 0 reads

µ = kT ln ρ(z) + v(z; H) + f hs[ρ̃(z)] +
∫

ρ(z′)
δf hs[ρ̃(z′)]

δρ(z)
dz′ +

∫
ρ(z′)ua

(∣∣r − r′∣∣) dr′.

(9)

The configurational chemical potential of a bulk fluid of density ρb is µ = kT ln ρb +f hs(ρb)+
ρb[∂f hs(ρb)/∂ρb] + ρb

∫
ua(r) dr.

3. Results and discussion

In order to demonstrate how the difference in the adsorbing properties of two pore walls
influences the phase diagram of a confined fluid, we have performed calculations for several
pores characterized by a fixed value of the parameter ε1 = 9.5 (in units of ε) and various
values of ε2. The parameter ε1 is rather low; we simply want to avoid the appearance of
layering transitions in the case of a pore with identical walls. Our calculations have been
preceded by the study of wettability of a single wall, characterized by the same value of the
parameter ε1. In this case we found a first-order wetting and the prewetting transition. The
value of the reduced wetting temperature is T ∗

w � 0.805, whereas the estimated value of the
reduced surface critical temperature is approximately equal to 0.93. Note that the bulk critical
temperature, obtained from the bulk counterpart of the theory equals T ∗

c = 1.325. The results
for a single adsorbing wall are summarized in figure 1, where a part of the phase diagram with
the prewetting line is displayed. We stress that no layering transitions within the investigated
interval of the temperatures, T ∗ > 0.69, have been found for this system.

We now return to the behaviour of the confined fluid. Figure 2 shows a series of phase
diagrams obtained for the pores with width H = 10 and characterized by different values of the
parameters ε2 = 9.5, 4.75, 3.8, 2.85, 1.9, 0.95, 0.475. We also show the phase diagram obtained
for the pore with one HW. The phase diagrams were evaluated in an usual way i.e. from the
dependences of � on µ, cf [18]. Obviously, when ε2 = 9.5, we deal with a slit-like pore formed
between identical walls. In this case the confinement of the fluid leads to the usual capillary
condensation phenomenon, i.e. the entire phase diagram shifts down along the temperature
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Figure 1. The gas–liquid part of the bulk phase diagram (solid curve). Dotted curve shows
prewetting line for adsorption on a single wall with ε1 = 9.5.
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Figure 2. Phase diagrams for Lennard-Jones fluid confined to slit-like pores with width H = 10,
ε1 = 9.5 and different values of ε2, listed in the figure. HW means that the second wall is just a HW.

axis with respect to the bulk-phase diagram. The reduced critical capillary condensation
temperature equals to T ∗

cc = 1.27 and the value of the average density (averaged over the
entire pore), 〈ρ〉 = �/H , at the critical capillary condensation point is 0.234. The capillary
condensation envelope is asymmetric. In particular, the change in wettability of the pore walls
at T ∗ � 0.8 causes development of a ‘knee’ at low values of �.

If the attractive potential exerted by the second wall is decreased to, ε2 ≈ 4.9 (the relevant
curve is not presented in figure 2), the qualitative picture of the system phase behaviour does
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not change. The critical temperature of the capillary condensation is almost identical as in the
pore with identical walls. However, the knee observed for ε2 = 9.5 gently transforms into two
steps. A similar situation persists up to ε2 � 4.85. However, for still lower values of ε2 the
phase diagrams splits into two branches, separated by the triple points, cf the curve evaluated
for ε2 = 4.75. The fist branch (i.e. the branch at low values of �) is markedly smaller than the
second one, which reflects the ‘specific’ capillary condensation.

A consecutive decrease in the value of ε2 is accompanied by further modifications of
the phase diagram. For ε2 = 3.8 we observe the existence of three branches, whereas for
ε2 = 2.85 the coexistence line is composed of four branches, separated by triple points. For
ε2 = 0.95 the number of branches is six. Each of the branches is characterized by its own
critical temperature. However, the development of a new branch at a given value of ε2 only
slightly influences the branches developed at higher values of ε2. The maximum number of
branches (nine) is formed when the second pore wall is just a HW. We also realize a decrease
in the triple point temperatures between higher-number branches; in the case when the second
wall is a HW, the triple point temperature is between a fifth and a sixth and additionally the
consecutive triple point temperature becomes less than 0.7. As at temperatures lower than the
bulk triple temperature the reliability of the density functional theory may be questioned, we
did not perform the relevant calculations at temperatures less than 0.7.

Figure 3(a) shows an example of the adsorption isotherm at T ∗ = 0.8, and figure 3(b) the
density profiles at the same temperature, evaluated for the pore H = 10 with ε2 = 0.475.
Consecutive steps in the adsorption correspond to the consecutive branches of the phase
diagram (at that temperature there are four transitions in the system). The density profiles
in figure 3(b) show equilibrium fluid structures before and after relevant phase transition.
For ε2 = 0.475 the attractive force due to the second pore wall is very small and the space
adjacent to this wall remains almost empty. The first adsorption step in figure 3(a) resembles
the prewetting step on a single wall, cf the density profiles shown in figure 3(b). However, the
temperature at which this transition takes place is slightly lower than the wetting temperature.
Similar behaviour of the adsorption isotherm in the pore has been also found at still lower
temperatures, T ∗

w > T ∗ > T ∗
t,4, where T ∗

t,4 � 0.745 is the fourth triple point temperature.
Steps 2 and 3 in the isotherm displayed in figure 3(a) are layering types. However, the layered
structure (cf figure 3(b)) is poorly developed. We recall that no layering transitions have been
found for a single wall. Finally, step 4 corresponds to the final pore filling, but after this
transition the second adsorbing wall remains still dry.

A question appears about the character of the transition corresponding to the first, small
branch of the phase diagram in figure 2. This transition takes place for ε2 � 4.85 and its critical
temperature is approximately equal to 0.75. The insets in figures 3(a) and (b) show respectively
the adsorption isotherm jump and the equilibrium density profiles before and after this transi-
tion, evaluated for the same system as the isotherm and the profiles in the main parts of these
figures, but at T ∗ = 0.73. The jump in the adsorption isotherm is very low and the local densi-
ties indicate that this transition takes place within the first layer adjacent to the first pore wall.

Figure 4 illustrates the influence of the pore width on the shape of the phase diagrams.
There are plotted coexistence envelopes for three pore widths, H = 8, 10 and 12. For each
pore we have plotted the diagrams evaluated for the second wall interacting via the Lennard-
Jones (9, 3) potential with ε2 = 9.5 (i.e. for pores with two identical walls), ε2 = 1.9 and
for pores with the second wall being just a HW. It is interesting that in the case of the pores
with non-identical walls, the initial parts of the diagrams coincide almost ideally. For example,
comparing the diagrams for the pore with ε2 = 1.9, the first three branches are almost identical
for the pores with widths H = 8, 10 and 12. Also, a part of the fourth branch is almost identical
for the pores with widths H = 10 and 12. This is particularly well seen for the pores with the



170 R Zagórski et al
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Figure 3. Adsorption isotherm (a) and the density profiles (b) for two coexisting phases. Numbers
in both parts label consecutive adsorption steps. The calculations are for H = 10, ε1 = 9.5,
ε2 = 0.475 and T ∗ = 0.8. The insets show the adsorption isotherms and the equilibrium density
profiles for two coexisting phases, corresponding to the first, small branch of the phase diagrams
in figure 2. The temperature is now T ∗ = 0.73.

HW. In this case the entire phase diagrams consist of branches depicting layering transitions.
However, the shape of the branch corresponding to capillary condensation depends on the pore
width. Obviously, the last feature is also observed for pores with identical walls.

Our calculations have demonstrated that the phase behaviour of the fluid confined in
pores with differently adsorbing walls may be quite different from that observed in pores with
identical walls and that even small changes in the adsorbing properties of one wall may lead
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Figure 4. Influence of the pore width on the phase behaviour of a fluid confined to the pores with
ε1 = 9.5. The values of ε2 and of H are given in the figure.

to qualitative changes in the phase diagram. The results presented here remain in overall
qualitative accordance with the results obtained for lattice systems using a Bragg–Williams
approximation [14]. Obviously, the question arises whether the observed changes are not an
artefact of a mean-field type approach. It is known that the theory applied by us ‘amplifies’ the
tendency of the system to undergo layering transitions and enforces the first-order character
of the transitions.

In the case of infinitely wide pores with identical walls, the surface phase diagram would
reduce to the prewetting line, displayed in figure 1. Although we have not determined an exact
value of the parameter ε1 at which the first-order wetting at a single wall vanishes, we can
state that for ε1 = 7.5 the reduced wetting temperature equals approximately 1.03, whereas
for ε1 = 4.75 it becomes close to the bulk critical temperature. At still lower values of the
adsorption energy the wall would be non-wet up to the bulk critical temperature. Thus, in the
case of infinitely large pores formed between two differently adsorbing walls with ε2 � 4.75,
the phase diagram would consist of two prewetting lines, each of them characterizing the
wettability of a single wall. In the case of very weakly adsorbing second wall, the phase
diagram for an infinitely wide pore would be just that shown in figure 1. However, the
calculations performed for pores with widths H = 8, 10 and 12 were quite different to those
for the H = ∞ phase behaviour. The presence of second weakly adsorbing (‘dry’) wall forces
layerings causes the development of the wetting-like transitions. ‘Dryness’ of the second wall
‘pushes’ molecules towards the first wall and enforces their clustering and thus facilitates phase
transitions. A question appears about the scenario of the changes in the phase diagram when
the pore width increases to infinity. In particular it is of interest if there is a crossover between
the phase behaviours shown in figures 1 and in 4 for any finite value of the pore width. Also,
an important question that should be asked is whether the observed behaviour is not due to
a mean-field approximation used in the density functional theory. These problems are now
under study in our laboratory.



172 R Zagórski et al
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